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Introduction

Musculoskeletal MR imaging is widely used in everyday clinical practice to investigate
disorders of soft tissue masses, bones, and joints (1-3). The emergence of stem cell therapy is
creating new opportunities for treatment of musculoskeletal disorders with MR intervention and
follow-up. Two lines of cell therapy can be explored. The first line is using stem cells that
normally give rise to cells of the musculoskeletal system, and that can thus replace
malfunctioning cells and form new tissue at the site of injury. The most well-studied stem cell in
the musculoskeletal arena is the mesenchymal stem cell (MSC) (also called bone marrow stromal
cell, to discriminate it from hematopoietic bone marrow cells). These MSCs have an amazingly
wide capability of cell differentiation, and are the cells that form cartilage, bone, muscle, support
tissue, tendons, and (redundant?) adipose tissue (see Figure 1).

Mesenchymal
Stem Cells (MSCs)

BONE C MUSCLE

Figure 1: Multipotency of adult MSCs. A key feature of stem cells, including MSCs, is that in parallel with cell
differentiation they self-renew, so that an exact copy of an undifferentiated cell is being produced and retained
throughout life. Figure courtesy of Osiris Therapeutics, Inc.



The second line of cell therapy that is being explored is to boost the patient’s own
immune system to fight cancer, applicable to musculoskeletal tumors, although so far most
immune stimulation/cancer vaccination studies have been conducted in patients with melanoma
and prostate cancer. The cells of choice can be tumor antigen-specific T lymphocytes, activated
killer cells, or dendritic cells (4).

Under the right circumstances, MSCs may “home” to injuries, engraft and differentiate
into various cell types (5). Clinical trials using MSCs for musculoskeletal repair, including bone
regeneration (6,7) and joint repair (8) have now being started. A few specific potential
applications and examples will now be further discussed in detail below.

Stem cell opportunities in bone repair

A striking example of the therapeutic use of autologous adult MSCs, that may sound like
science fiction, was published in 2004 (9). A cancer patient had a large center part of his jaw
removed 9 years prior. A titanium cage was molded that matched the missing piece, and was
seeded with MSCs along with bone morphogenic protein. This engineered scaffold was then
implanted in the patient’s back, and monitored for bone formation using a bone-seeking
radiotracer and scintigraphy. Following sufficient growth of new bone, the mandibular scaffold
was excised and implanted between the two pieces of jaw. By the 4™ week post-transplantation,
the patient could enjoy his first dinner in 9 years (reportedly a Bratwurst sandwich, with the
study having been performed in Germany). Even with his edentulous jaws, mastication was now
possible, and the stem cell approach prevented the occurrence of a secondary bone defect.

Stem cell opportunities in arthritis

Rheumatoid arthritis (RA) and osteoarthritis (OA) remain incurable and difficult to treat.
In these cases, the articular cartilage frequently incurs damage because of injury or disease, but
has very limited powers of regeneration. However, injury that penetrates the cartilage layer and
subchondral bone, causing rupture of the vasculature and marrow, will allow the influx of MSCs
into the lesion. These multipotent cells locally differentiate and synthesize fibrocartilage repair
tissue. Although this tissue will offer temporary symptomatic relief, with time and use, it
generally fails. Several proteinaceous factors have activities that may stimulate the
differentiation of MSCs toward the synthesis of an improved repair tissue, but they are difficult
to apply effectively. Cultures of MSCs genetically modified to constitutively express certain
growth factors, such as TGF-B1 and BMP-2, will undergo chondrogenesis in aggregate pellet
cultures (10-12). From these findings, arise the overall hypotheses that gene transfer can be used
as a means to achieve persistent synthesis of specific proteins within a cartilaginous lesion, and
that delivery of certain stimulatory molecules in this manner can be used to augment the
differentiation of MSCs toward chondrogenesis in vivo.

Stem cell opportunities in muscular dystrophy

Muscular dystrophy is an inherited disease that is known to result in skeletal muscle
weakness and cardiac and respiratory failure, resulting from chronic bouts of muscle damage and
regeneration; eventually exhausting the endogenous pool of stem cells leading to organ failure
and death. A successful treatment for such muscular diseases will need to meet several criteria:
1) prevent cell necrosis, 2) increase muscle mass and force, and 3) improve the structural
integrity of the remaining cells. Stem cell transplantation has the potential to meet these criteria,
since stem cells can serve as vehicles to deliver therapeutic or missing genes in addition to




increasing the myogenic capacity of the tissue. Moreover, in some cases stem cell transplants
have been shown to play an important therapeutic role independent of cell replacement or
transdifferention/fusion, by providing essential nutrients and mechanical support to the damaged
tissue (13).

Initial transplantation strategies in muscular dystrophy focused primarily on the delivery
of myoblasts to the dystrophic muscle. Since its identification, the satellite cell or myoblast has
been considered an adult skeletal muscle stem cell. Initial myoblast transfer studies showed great
promise and demonstrated the ability of myoblast cells to increase muscle mass and restore
function following muscle necrosis and damage (14-16). Unfortunately the therapeutic efficacy
of early myoblast transfer studies was limited by massive myoblast cell death observed
immediately following in vivo delivery (17). Recent interest has focused on identifying novel
stem cell populations that escape this early period of cell death and may be better suited for
transplantation therapies.

Muscle-derived stem cells (MDSC) have shown a potential ability to repair dystrophic
skeletal muscle (18-20). This cell population can undergo in vivo differentiation to regenerate
lost myofibers and restore dystrophin expression (18,21-25).They are also capable of
reconstituting the hematopoietic stem-cell compartment of lethally irradiated dystrophic mice
(26) and forming bone (27). These combined characteristics are indicative of a unique stem cell
population with a less committed phenotype than the traditional primary myoblasts used in early
transplant studies. Intramuscular injection of normal muscle-derived stem cells into the murine
model of Duchenne muscular dystrophy (mdx mice) produces a 10-fold increase in dystrophin
positive myofibers compared to the same procedure done with normal myoblasts (22,24).
Moreover, dystrophin expression persists up to 90 days and results in histopathological
correction, as demonstrated by a decrease in the number of central nucleated fibers. These early
results indicate that MDSC could provide a source of cells for therapeutic transplants in
dystrophic muscle. In addition, MDSC cells have immune-privilege properties permitting them
to avoid immune rejection (24). Finally, MDSC also have properties that permit systemic
delivery through the circulatory system (28). Arterial delivery strategies have been explored to
provide more global delivery of the cell grafts to dystrophic muscle. MDSCs will migrate from
the vasculature to engraft in dystrophic muscle (19,22,26,28). Recent data indicate that this
homing pathway involves the interaction of vascular endothelial cells and L-selectin expressed
by the migrating stem-cell population (28) and damaged muscle cells (29-31).

Additional adult muscle progenitor cells have also been isolated from non-muscle tissue.
Whole bone marrow, hematopoietic cells, adipocytes, MSCs (above), and fibroblasts have all
been shown to have the capacity to form muscle under the right conditions. In 1998 it was first
reported that bone-marrow progenitor cells, including adherent and nonadherent populations, are
capable of participating in skeletal muscle repair in normal mice after cardiotoxin-induced
damage (32). It was also shown that bone-marrow cells, including purified hematopoietic
progenitor cells, can contribute to the regeneration of skeletal and cardiac muscle in mdx mice, in
which these striated muscles undergo continual remodeling (33,34). Gussoni et al reported that
this process can also be observed in human muscle (35).

Finally, embryonic and fetal stem cells also have shown the potential to rescue dystrophic
muscle. Intra-arterial injection of wild-type mesoangioblasts (vessel associated fetal stem cells)
in a murine model of limb girdle muscle dystrophy resulted in expression of the missing
sarcoglycan in more than 50% of soleus muscle fibers. In addition, the mesoangioblasts restored
sarcolemmal integrity and resulted in functional recovery (29). This is especially important for



the treatment of essential muscles such as the diaphragm, impairment of which results in severe
respiratory problems in muscular dystrophy (36).

MR imaging opportunities

The design and improvement of the stem cell-based therapies will be greatly facilitated
by the development of sensitive, non-invasive, and non-destructive techniques for tracking stem
cells following implantation or infusion. It is here where the opportunity exists to use cellular
MR imaging in translational and clinical stem cell research. Using superparamagnetic iron
oxides (SPIO) and in particular the clinical formulation Feridex® it has now been reasonably
well established that cell therapy, including the delivery and migration of labeled cells, can be
reliably monitored by MR imaging (37). That is, when there is no significant cell death and
subsequent label uptake by macrophages, and when cells are not diluting out the label by cell
division within the timeframe of imaging.

SPIO contrast agents have been utilized to monitor therapeutic muscle stem-cell
transplants in rodents (38,39) and in a murine model of Duchenne/Becker’s muscular dystrophy
(mdx mice) (40). These studies were performed with a subclone of MDSCs, mc13, that has the
capacity to efficiently regenerate skeletal muscle in mdx mice following a single intramuscular
injection (22). Mc13 cells are engineered to express the mini-dystrophin gene and the -
galactosidase (LacZ) reporter gene, which allows for correlative histological studies. SP1O
Labeled mc13 cells were transplanted into the gastrocnemius-plantaris-soleus muscle group of 6
weeks old mdx mice. High-resolution MRIs were obtained 24 hrs, 2, 4, and 11 days post-
injection. Distinct regions of signal hypo-intensity were identified in the posterior musculature
of animals receiving labeled cell transplants at all time points (Fig 2; (40)). Control animals
receiving unlabeled cell transplants displayed homogenous images, without the regions of hypo-
intensity seen in the experimental animals. Engrafted cells were detected by analysis of -
galactosidase activity, dystrophin expression, and iron content. LacZ expressing fibers were
readily identified in regions corresponding to the hypo-intense regions in MR images.
Additionally, Prussian blue staining of consecutive serial sections revealed the presence of iron
accumulation in many of the LacZ positive fibers, confirming the correlation between the
histological location of the cells and MR images. Immunostaining for mini-dystrophin indicated
that the engrafted cells restored membrane dystrophin expression and were therefore potentially
therapeutic (40).

24 Hr Post SPIO Labeled Cell Transfer

T, weighted Figure 2: High Resolution T; and T, contrast generated in dystrophic
muscle following SP10 labeled MC13 transfer.

An advantage of cell therapy is the belief that during tissue
damage stem cells will home to regions of tissue
regeneration. Muscle damage results in the

expression of a cascade of myogenic and chemotactic
agents which are essential for muscle regeneration and the
recruitment of stem cells (41). As shown above
reambulation/reloading following cast immobilization,
induces massive muscle damage in the mechanically
loaded soleus muscle (42). The rapid regeneration of muscle following this type of damage
indicates that the coordinated expression of endogenous factors necessary for myogenic cell
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MUUSE dUIEUS 3., weighted Tl Figure 3: Targeting of muscle derived stem cells to

“ P the mouse soleus following casting and
reambulation. Note the hyperintense regions due to
muscle damage on T, weighted images, and the
hypointense regions corresponding to cell
deposition on both T; and T, weighted images.

migration, proliferation, and differentiation are
present in this model. In order to track cell
delivery, SPIO labeled stem cells were
administered by direct intramuscular injection
and were observed by MRI as regions of hypo-
intensity in the regenerating soleus as well as
: other posterior hindlimb muscles (Fig. 3).

Engrafted cells were confirmed by LacZ activity as well as iron content. LacZ expressing fibers
were identified in regions corresponding to the hypo-intense regions on T,-MRI (Fig 3A).
Additionally, Prussian blue staining of corresponding serial sections revealed the presence of
iron accumulation in LacZ positive fibers. Mc13 cell engraftment was also monitored in this
model following arterial delivery. Consistent with previous findings of vascular delivery of
SPIO labeled cells (38), small, punctuate areas of decreased signal intensity were seen only in
the limb musculature of the leg that received labeled cell infusion (Fig 3D). The contra-lateral
limb and control limbs injected with unlabeled cells did not demonstrate this characteristic
pattern. Histological analyses of the leg musculature showed stem cells within the vasculature,
distributed in patterns corresponding to the MR images. X-gal staining confirmed the presence of
stem cell integration in the soleus following vascular delivery (Fig 3C).

One potential pitfall is the effect of iron loading upon cell function. We have shown that
SPIO labeling is not toxic to muscle derived stem cells and does not alter the normal growth rate
(38,40). The labeled cells differentiated to mature, multinucleated myotubes at rates comparable
to unlabeled cells (38). The resulting myotubes displayed intracellular iron accumulation
throughout the length of the myotubes and were otherwise morphologically indistinguishable
from unlabeled myotubes. Immunofluorescent analysis of alpha-actinin and desmin expression
also revealed that labeled myotubes contain normal sarcomeres (43). On transmission electron
microscopy images, electron dense areas indicative of iron accumulation could be seen in the
endosomal compartments (38). As previously suggested, trapping of iron-oxide inside the
endosome reduces the chance of Fenton-like reactions in the myoplasm and the containment of
the iron until it can be metabolized (44). In agreement with this hypothesis, ferumoxide
accumulation did not affect cellular viability or alter the normal growth rate of labeled cells in
vitro. However, while overall Feridex-labeling does not appear to affect cell viability,
proliferation, and differentiation, in the case of chondrocytic differentiation of MSCs a marked
inhibition of proteoglycan production (a hallmark of chondrogenesis) has been observed (45). As
this was found to be dependent on the labeling dose (lower iron loads did not impair
chondrogenesis) (46), careful titration of label and pre-in vivo assessment is warranted for
specific cell applications.

Ultimately, it is the fate of the viable transplanted stem cells which will determine the
efficacy of the treatment such that noinvasive methods of monitoring gene transfer need not only
be capable of monitoring the initial delivery of cells but also if tissue integration/regeneration




occurs. Whereas cell labeling will generate that highest initial contrast, a limiting factor of this
strategy is the ultimate fate of the label. In order to track cell migration and integration, stem
cells will be engineered to express an MR probe under a tissue specific or conditional promoter.
A number of approaches have been developed to monitor gene expression in vivo using MRI and
spectroscopy (22,46-49). MR strategies have included activated contrast agents (50), the
targeting and expression of cell surface receptors (51), antibodies labeled with contrast agents
(52), and the expression of unique genes (53-56). All these approaches aim to present a unique
signature in the target tissue either by generating MR contrast or by the expression of an absent
or foreign metabolite. Unique marker genes have been utilized to monitor gene expression in
tumor xenographs using cytosine deaminase from yeast grown in animals (57) and viral delivery
of genes encoding iron loading proteins in the brain (56). The expression of mammalian genes in
tissue that normally does not contain creatine kinase (CK) has also been used to detect gene
expression in vivo. Both transgenic (53) and viral delivery methods (54) have demonstrated that
the expression of CK in murine livers can result in the production of phosphocreatine and is
detectable in vivo using *'P-MR spectroscopy. Similarly, we have previously developed a marker
gene that results in a novel **P metabolite (phosphoarginine) in CK containing tissues, i.e.
skeletal and cardiac muscle. One of the latest developments is the construction of an artificial
lysine-rich protein (LRP), chock full of amide protons, that can be detected by chemical
exchange saturation transfer (CEST) imaging (58). As the contrast relies on direct detection of
the exchangable amide protons, this is a prototype example of an endogenous reporter that does
not need administration of a substrate or contrast agent, and can be swtiched “on” and *“off” at
will by applying an off-radiation pulse.

The unique strength of MR imaging is that it can not only be applied for visualizing stem
cell injection and cell migration, but also for follow-op of regenerating tissue induced by stem
cells, e.g. meniscal tear repair (59). If succesful, there are plenty of opportunities for
reimbursement of this specific application, given the existence of both expensive race horses and
soccer players. Along these lines, *H single and double Quantum MRI has been used to evaluate
tendon regeneration following implantation of collagen sponges seeded with adult MSCs (60).
As for the future of clinical stem cell therapy and MR imaging, an important development has
been the rise of MR fluoroscopy using MR-compatible catheters (61) and the use of “open” MR
scanners, allowing the interventional radiologist to perform MR-guided stem cell injections in
real time. As both the MR-labeled stem cells and the injection target (i.e. tumor mass or specific
joint/tendons) can be visualized, one can assure verification of accute delivery and re-inject cells
if needed. Although many invasive needle procedures are being performed by radiologists (i.e.,
arthroscopic joint injections, percutaneous tumor biopsies), the difficulty with targeted injections
should not be underestimated, as a recent clinical cellular MR tracking study has shown that even
experienced radiologists can miss their target organ in half the patients when performed solely
under ultrasound guidance (62). In summary, with the tools being in place, there are plenty of
research opportunities in the musculoskeletal system.
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